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Abstract
The initial value problem for a class of reversible elementary cellular automata
with periodic boundaries is reduced to an initial-boundary value problem for a
class of linear systems on a finite commutative ring Z2. Moreover, a family of
such linearizable cellular automata is given.

PACS numbers: 02.30.Ik, 05.45.Yv, 87.17.−d

1. Introduction

A cellular automaton is a discrete dynamical system composed of regular array of cells.
Each cell takes a finite number of states which are updated by a local transition function in
discrete time steps. The updating rule is quite simple, but cellular automata show complicated
behaviours. In the 1980s, Wolfram suggested some connections between cellular automata
and differential equations and phenomenologically classified them into four classes [1–3].
Wolfram et al investigated a mathematical structure of some kinds of cellular automata such
as additive [4] or totalistic [1, 2] ones, which have a simple structure arising from their local
transitions. In 1989, Takesue introduced elementary reversible cellular automata (ERCA) and
a notion of additive conserved quantities [5]. He obtained many additive conserved quantities
of ERCA and pointed out the importance of studying additive conserved quantities from the
physical point of view. Moreover, Hattori and Takesue studied the general existence condition
of the additive conserved quantities [6]. In 1990, Takahashi and Satsuma proposed a soliton
cellular automaton (the box–ball system) as an ultimately discretized soliton system [7]. In
1996, Tokihiro et al established a direct connection between the box–ball system and the
KdV equation by using a procedure called ultradiscretization [8]. Using the ultradiscretization
procedure, many properties of the box–ball systems such as N-soliton solutions, bilinear
structure and conserved quantities have been investigated thoroughly [9–14], and the box–ball
systems are now considered to be integrable. Then, it is natural for us to put a question:
are there any integrable cellular automata other than the box–ball systems? The authors at
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first tried to find reversible cellular automata, because reversibility is a necessary condition
for integrability. In the precedent paper [15], we introduced a graph-theoretical criterion for
reversibility of cellular automata and classified all reversible elementary cellular automata
(ECA) [1] with periodic boundaries. Some of the reversible ECA are trivial or additive;
however, there exist some nonlinear reversible cellular automata whose mathematical structure
has not been studied in detail yet.

In this paper, we show that some of the nonlinear reversible ECA can be reduced to some
linear systems on a finite commutative ring Z2 by properly dividing their initial configurations.
It should be noted that the box–ball system with periodic boundaries can also be reduced to a
linear system on a finite set, which is an ultradiscrete analogue of the Jacobi variety [16, 17].
Then we generalize the linearizable ECA to cellular automata which take arbitrary number of
states and whose time evolution depends on arbitrary size of the neighbourhood. A family of
linearizable cellular automata thus obtained has a simple structure arising from permutations;
the fundamental period of arbitrary configuration in the time evolution is exactly computed.

2. Reversibility of cellular automata

A one-dimensional cellular automaton A(n)
r = 〈N, Zn, E, δ〉 is a quadruple defined by the

one-dimensional array of N cells; a finite commutative ring Zn := Z/nZ; a neighbourhood
E := {e1, e2, . . . , er}, where e1, e2, . . . , er are consecutive r integers; and a local transition
function δ : Z

r
n → Zn, where Z

r
n is the direct product of r copies of the ring Z. In this paper,

a cellular automaton is assumed to be with periodic boundaries. The cellular automaton A(n)
r

has nnr

local transition functions, each of which is called a rule and is referred to the number

R :=
∑

c1,c2,...,cr∈Zn

δ(c1, c2, . . . , cr )n
nr−1c1+nr−2c2+···+n0cr , (1)

where the sum ranges over possible combinations of c1, c2, . . . , cr ∈ Zn. A mapping
c : ZN → Zn is called a configuration of size N and is updated by the global transition
function F:

F(c) = c′,
where

c′
i = δ

(
ci+e1 , ci+e2 , . . . , ci+er

)
,

for i = 1, 2, . . . , N and ci ∈ Zn is the value of the ith cell in the configuration c. If the global
transition F is bijective then the cellular automaton A(n)

r is called reversible.
In order to show reversibility of cellular automata, graph-theoretical approaches are valid

[15]. Each configuration of the cellular automaton A(n)
r one-to-one corresponds to a closed

walk of the de Bruijn graph G
(n)
r−1 [18]. Let E be the edge set of the de Bruijn graph G

(n)
r−1.

Consider a mapping φ from E to Zn. Since E is equivalent to Z
r
n as a set, each mapping φ

can be identified with a rule of A(n)
r . A mapping φ which is identified with the rule referred

to the number R is denoted by φR . By the mapping φR : E → Zn, each closed walk in G
(n)
r−1

corresponds to a configuration of A(n)
r [19, 20]. If the correspondence is injective then the

rule is reversible because the number of possible configurations of A(n)
r is nN and G

(n)
r−1 has

nN closed walks of length N for any N > r − 1.
Let us consider a weighted adjacency matrix MRG

(n)
r−1 of the de Bruijn graph G

(n)
r−1 [21].

The matrix MRG
(n)
r−1 is a nr−1 × nr−1 matrix whose entries mij (i, j = 1, 2, . . . , nr−1) are

given by

mij =
{
wk if vivj is an edge and φR(vivj ) = k

0 otherwise,
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Table 1. All reversible rules of ECA with periodic boundaries and the configuration sizes for
which the rules are reversible.

Rule Size

150 105 N ≡ 1, 2 (mod 3)
154 166 180 210 45 75 89 101 N ≡ 1 (mod 2)
170 240 15 85 All N ∈ N

204 51 All N ∈ N

for k = 0, 1, . . . , n − 1, where vi and vj are vertices of G
(n)
r−1 and vivj denotes a directed edge

which connects vi and vj in the direction from vi to vj . We regard the weighted adjacency
matrix as a matrix over T (W), where T (W) is the tensor algebra T (W) = ⊕∞

i=0 W⊗i and W

is the Z-module generated by the weights w0, w1, . . . , wn−1. Then the entry in position (i, j)

of the Nth power of the matrix MRG
(n)
r−1 has the following form:∑

k1,k2,...,kN−1∈{1,2,...,nr−1}
mik1 ⊗ mk1k2 ⊗ · · · ⊗ mkN−1j .

We obtain the following theorem [15].

Theorem 1. A rule of the cellular automaton A(n)
r = 〈N, Zn, E, δ〉 with periodic boundaries

is reversible if and only if all nN terms of tr
[(

MRG
(n)
r−1

)N ]
are distinct.

Let n = 2 and r = 3. Then we obtain ECA, A(2)
3 = 〈N, Z2, {−1, 0, 1}, δ〉. For ECA, we

can inductively compute the trace of the Nth power of the weighted adjacency matrix MRG
(2)
2 ,

and obtain the following theorem concerning reversibility of ECA [15].

Theorem 2. There exist exactly 16 reversible rules of ECA with periodic boundaries (see
table 1).

The rules in the last two rows of table 1 are trivial and those in the first row are additive,
i.e., their updating rules are sum modulo two of the values of the neighbours [4]. Therefore,
only the rules in the second row are considered to be nonlinear. In the next section, we show
that the initial value problems for the rules 154, 166, 180 and 210 with periodic boundaries
are reduced to initial-boundary value problems for some linear systems on Z2.

3. Reduction to linear systems

Since the rules 154, 166, 180 and 210 are congruent with respect to the reflection and the
conjugation [1], we consider only the rule 154. The size N of a configuration is assumed to be
odd in order for the rule 154 to be reversible.

Let δ be the local transition of the rule 154. Also let f : Zn → Zn be the right shift,

f : ci 	→ ci+1,

for i = 1, 2, . . . , N, where c is a configuration of odd size N. Consider the composition
δ̃ := f ◦ δ. Then we obtain a reversible global transition F̃ :

F̃ (c) = c′, (2)
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where

c′
i = δ̃ (ci−2, ci−1, ci)

≡
{
ci−2 + ci (mod 2) if ci−1 = 0
ci (mod 2) otherwise,

(3)

for i = 1, 2, . . . , N . Thus the value 1 (resp. 0) of a cell evolves into the value 0 (resp. 1)
only when 10 hits it from the left. Therefore, a configuration is divided into some evolving
domains by boundary walls, each of which consists of a sequence of 1’s and is never updated
by F̃ .

3.1. Construction of blocks

The evolving domains of a configuration are extracted as follows.

(i) Draw lines under all 10’s in the configuration.
(ii) Pick arbitrary one pair of the lined two adjacent cells whose next cell on the right is

unlined.
(iii) If the next two cells on the right of the lined two adjacent cells are

(a) 00 then draw a line under the 00 and go to (iii),
(b) otherwise, draw a line under the left of the two adjacent cells and go to (ii).

(iv) Repeat the procedure (ii) as many as possible.

If we complete the above procedure then the right side of a pair of lined two adjacent cells
is other pair of lined two adjacent cells or a lined cell. Therefore, by the above procedure, we
obtain some blocks of lined adjacent cells, each of which consists of some pairs of lined two
cells and a lined cell on the rightmost. We call each of such blocks of lined cells simply a
block. We assume every lined cell to be in a block. By construction, the remaining (unlined)
cells must take the value 1 and are never updated by the global transition F̃ . In each block,
the cells on the even positions counting from the left are never updated by F̃ as well. Since a
block ends only when a cell on an even position takes the value 1, the block size is a conserved
quantity.

Example 1. Let us consider a configuration

1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1.

At first, draw lines under all 10’s

1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1.

Pick, for example, the leftmost lined two adjacent cells then, by (iii), we have

1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1.

Repeating the procedure, we finally obtain the following four blocks of size 3, 9, 3 and 5,
respectively,

1 0 0︸︷︷︸
size 3

1 1 1 0 1 0 1 0 0 0 0︸ ︷︷ ︸
size 9

1 0 0︸︷︷︸
size 3

1 1 0 1 0 1︸ ︷︷ ︸
size 5

1 1.
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3.2. Time evolution of blocks

Now we consider the time evolution of blocks given by the global transition F̃ . Suppose the
values of the cells in a block of size 2L + 1 at time t to be bt

0, b
t
1, . . . , b

t
2L, where L is a natural

number. By construction, the values of the cells bt
0, b

t
1, . . . , b

t
2L naturally satisfy

bt
0 = 1 and bt

2i+1 = 0, (4)

for i = 0, 1, . . . , L − 1 and t � 0. Hence, the initial condition for the block is

b0
0 = 1 and b0

2i+1 = 0, (5)

for i = 0, 1, . . . , L − 1. According to (4) and the local transition (3), the values of the cells
satisfy the following boundary conditions:

bt
0 = 1 and bt

1 = 0, (6)

for t � 0.
There exist eight possible configurations of the neighbourhood of a cell. However,

according to the condition (4), only five configurations 101, 100, 010, 001 and 000 of them
can be realized in a block. Therefore, we need only five local transitions of the rule 154 in the
time evolution of a block:

δ(1, 0, 0) = δ(0, 0, 1) = 1

δ(1, 0, 1) = δ(0, 1, 0) = δ(0, 0, 0) = 0.

Hence the time evolution of the block is represented by

bt+1
i ≡ bt

i−2 + bt
i (mod 2), (7)

for i = 2, 3, . . . , 2L. This is nothing but a linear system on Z2. Thus the initial value problem
for the rule 154 with periodic boundaries is reduced to the initial-boundary value problem (5),
(6) for the linear system (7) on Z2.

Each configuration of a cellular automaton is represented by a generating function [4].
Noting the condition (4), let us consider the following generating function for a configuration
of the block

B(x)t := 1 +
L∑

i=1

bt
2ix

2i ,

where the value of the ith cell is the coefficient of xi , and all coefficients are elements of
the ring Z2. By (7), the time evolution of the block is represented by multiplication of the
generating function for the configuration by the polynomial

T (x) := 1 + x2,

according to

B(x)t+1 = T (x)B(x)t ,

where the coefficient of xi for i > 2L is assumed to be zero.
The inverse time evolution of the block is also represented by a polynomial

T −1(x) =
L∑

i=0

x2i .
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Therefore, we have

B(x)t−1 = T (x)−1B(x)t

= 1 +
L∑

i=1


1 +

i∑
j=1

bt
2j


 x2i .

Thus the value of a cell in a block at the previous time step is given by the sum modulo two
of the values of its own and all cells on the left side at the present time step.

3.3. Periods

Let

s := �log2 L�, (8)

where � � : R → Z is the floor function. Then 2s+1 is the smallest number satisfying

B(x)t+2s+1 = T (x)2s+1
B(x)t = B(x)t

for any B(x)t (see proposition 2). The smallest P ∈ N satisfying B(x)t+P = B(x)t is called
the fundamental period of the configuration B(x)t in the time evolution T (x). Thus the
fundamental period of a block whose size is 2L + 1 is 2s+1. Note that the fundamental period
of a block depends not on its configuration but only on its size.

Consider a configuration c of size N which contains m blocks of size 2L1 + 1, 2L2 +
1, . . . , 2Lm + 1, where L1 � L2 � · · · � Lm ∈ N, respectively. Let

si := �log2 Li�,
for i = 1, 2, . . . , m. Then the fundamental period of the configuration c in the time evolution
given by the global transition F̃ is the least common multiple of 2s1+1, 2s2+1, . . . , 2sm+1:

l cm
(
2s1+1, 2s2+1, . . . , 2sm+1

) = 2sm+1.

The global transition F̃ is given by the composition δ̃ = f ◦ δ of the local transition δ of the
rule 154 and the right shift f . Now we consider the global transition F which is given only
by the local transition δ of the rule 154. Then the configuration which is obtained after 2sm+1

step evolution of the configuration c by the global transition F is the 2sm+1 shift of c in the left
direction. The size N of the configuration c and the number 2sm+1 are relatively prime, because
N is odd. Thus we have the following proposition.

Proposition 1. Let c be a configuration of size N ≡ 0 (mod 2) which contains m blocks of size
2L1 +1, 2L2 +1, . . . , 2Lm +1 (L1 � L2 � · · · � Lm ∈ N), respectively. Then the fundamental
period of the configuration c in the rule 154 is a divisor of 2sm+1N . If the configuration c has
no translation symmetry then the fundamental period is exactly 2sm+1N .

Since the fundamental period of a block depends only on its size, the maximum among
the fundamental periods for a fixed N in the rule 154 is attained by the configurations which
consist only of a block.

Corollary 1. The maximum Pmax among the fundamental periods of configurations for a fixed
size N in the rule 154 satisfies

N(N + 1) � 2Pmax � 2N(N − 1).
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4. Generalizations

In the previous section, we showed that the initial value problem for the reversible rule 154
of ECA with periodic boundaries can be reduced to the initial-boundary value problem (5),
(6) for the linear system (7). The following properties of the reversible ECA characterize its
behaviour in the time evolution given by the global transition F̃ .

(i) In every configuration, the time evolution is localized in some blocks which are separated
by boundary walls.

(ii) In each block, the time evolution is linear on a finite commutative ring.

We generalize the linearizable ECA to the cellular automaton A(n)
r for arbitrary n ∈ N and

r ∈ N with the above properties (i) and (ii) kept.

4.1. Rules

Remember that, in the time evolution given by the global transition F̃ (2) of the right-shifted
rule 154, the value 1 (resp. 0) of a cell evolves into the value 0 (resp. 1) only when 10 hits it
from the left. Thus a sequence of numbers 10 acts as a permutation(

0 1
1 0

)
on the finite commutative ring Z2. Noting this, we consider the following cellular automaton;
a sequence of numbers i0 · · · 0 (i = 0, 1, . . . , n − 1) of size r − 1 acts as a permutation(

0 1 · · · n − 1
αi αi + 1 · · · αi + n − 1

)
(9)

on the finite commutative ring Zn, where 0 � α � n − 1 and the arithmetic is considered
modulo n. The value cj ∈ Zn (j = 1, 2, . . . , N) of the j th cell in a configuration c evolves
into αi + cj (mod n) only when i0 · · · 0 (i = 0, 1, . . . , n − 1) hits it from the left. Thus we
obtain the local transition δ̃ : Z

r
n → Zn:

c′
i = δ̃

(
ci+e1−er

, ci+e2−er
, . . . , ci

)
≡
{
αci+e1−er

+ ci (mod n) if ci+e2−er
= · · · = ci+er−1−er

= 0
ci (mod n) otherwise,

(10)

for i = 1, 2, . . . , N . Remark that the local transition δ̃ is the composition f ◦ δ of the right
shift f : Zn → Zn:

f : ci 	→ ci+er
,

for i = 1, 2, . . . , N and a local transition δ : Z
r
n → Zn of the cellular automaton A(n)

r . If
α = 0 then the rule (10) is nothing but the identity c′

i = ci for i = 1, 2, . . . , N .
Consider the global transition F̃ :

F̃ (c) = c′,

where c′ is given by the local transition (10). Then F̃ actually has the properties (i) and (ii);
we can extract blocks from a configuration as follows.

(i) Draw lines under all i0 · · · 0’s (i = 1, 2, . . . , n − 1) of size r − 1 in the configuration.
(ii) Pick arbitrary one pair of the lined r − 1 adjacent cells whose next cell on the right is

unlined.
(iii) If the next r − 1 cells on the right of the lined r − 1 adjacent cells are

(a) 0 · · · 0 then draw a line under the 0 · · · 0 and go to (iii),
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(b) otherwise, draw a line under the leftmost of the r − 1 adjacent cells and go to (ii).
(iv) Repeat the procedure (ii) as many as possible.

If the size of a configuration is not equal to a multiple of r − 1 then this procedure ends
in finite steps, and we obtain some blocks of size 1 (mod r − 1), each of which consists of
some pairs of lined r − 1 adjacent cells and a lined cell on the rightmost. We assume every
lined cell to be in a block. In each block, only the cells in position i ≡ 1 (mod r − 1) are
updated by the global transition F̃ . The remaining (unlined) cells are never updated by F̃ .
Since the sequence of numbers 0 · · · 0 acts as the identity, the leftmost cell of each block is
never updated by F̃ as well. Therefore, the size of a block is a conserved quantity. Since the
time evolution of a block is given by a linear equation on Zn as we mention later, the rule (10)
is reversible if the size of a configuration is not equal to a multiple of r − 1.

Remark 1. Let the ith vertex vi of the de Bruijn graph G
(n)
r−1 associated with the cellular

automaton A(n)
r be vi = (i − 1)n, where the subscript n means the n-adic number expression3.

Consider the weighted adjacency matrix MRG
(n)
r−1 of the graph G

(n)
r−1 whose entries are weighted

according to the rule (10). Put the sum of all nr−1 elements in the ith row of the matrix Si

for i = 1, 2, . . . , nr−1. The weighted adjacency matrix MRG
(n)
r−1 of the de Bruijn graph G

(n)
r−1

has the following property: every row sum Si equals to both the trace and the weight sum∑n−1
j=0 wj ,

Si = tr
[
MRG

(n)
r−1

] =
n−1∑
j=0

wj (11)

for i = 1, 2, . . . , nr−1. Because the matrix MRG
(n)
r−1 is obtained by an action of the permutation

(9) on the rows of the weighted adjacency matrix whose entries are weighted according to the
rule equivalent to the left shift c′

i = ci+er
, and the action never changes the trace and all Si’s.

By the setting of the vertices vi , it is clear that the weighted adjacency matrix associated with
the left shift satisfies the condition (11). As we mentioned in [15], this property with n = 2
and r = 3 is a sufficient condition for reversibility of ECA.

4.2. Time evolution

Suppose the values of the cells in a block of size (r − 1)L + 1 to be bt
0, b

t
1, . . . , b

t
(r−1)L, where

L is a natural number. Then the time evolution of the block given by the global transition F̃ is
represented by a linear equation on the finite commutative ring Zn

bt+1
i ≡ αbt

i−r+1 + bt
i (mod n) (12)

for i = r − 1, r, . . . , (r − 1)L.
By construction of the block, the values bt

0, b
t
1, . . . , b

t
(r−1)L of the cells in the block

naturally satisfy

bt
0 = b0

0 = 0 and bt
j = 0, (13)

for j = r − 1, 2(r − 1), . . . , (r − 1)L and t � 0. Therefore, the initial condition for the block
is

b0
0 = 0 and b0

j = 0, (14)

for j = r − 1, 2(r − 1), . . . , (r − 1)L. The block also satisfies the following boundary
conditions:

bt
0 = b0

0 and bt
1 = bt

2 = · · · = bt
r−2 = 0, (15)

3 If the length of the n-adic number is shorter than r − 1 then we fill 0’s on the left side so the length as to be r − 1.
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for t � 0. Thus the initial value problem for the rule (10) with periodic boundaries is
reduced to the initial-boundary value problem (14), (15) for the linear system (12) on the finite
commutative ring Zn.

By virtue of the condition (13), the generating function for a configuration of the block is
given as follows:

B(x)t := b0
0 +

L∑
i=1

bt
(r−1)ix

(r−1)i ,

where the coefficients are elements of the ring Zn. By (12), the time evolution of the block is
represented by multiplication of the generating function for the configuration by the polynomial

T (x) := 1 + αxr−1,

where the coefficient of xi for i > (r − 1)L is assumed to be zero.

4.3. Periods

Now we consider the fundamental period of a block in the rule (10). The time evolution
of a block whose generating function is B(x)t is given by the polynomial T (x) on Zn.
Therefore, computing a period of the block is equivalent to finding such a natural number M
that T (x)M = 1 on Zn. Since the coefficient of xi for i > (r − 1)L in the polynomial T (x)M

is assumed to be zero, T (x)M is expanded as follows:

T (x)M =
L∑

j=0

MCjα
jx(r−1)j . (16)

Thus, in order to compute a period of a block of size L in the rule (10), we find such M ∈ N that
MCjα

j ≡ 0 (mod n) for 1 � j � L. Remark that this condition for the binomial coefficients
of the polynomial T (x)M is independent of the parameter r in T (x), which is the size of the
neighbourhood of the cellular automaton A(n)

r .

Now, let n = ∏q

i=1 p
epi

(n)

i , where p1 < p2 < · · · < pq are primes and epi
(n) is the index

of n with respect to pi for i = 1, 2, . . . , q. Also let α = β
∏q

i=1 p
epi

(α)

i = 0, where β and n
are relatively prime. Put

si := ⌊
logpi

L
⌋

for i = 1, 2, . . . , q. Also put

M :=
q∏

i=1

p
epi

(M)

i ,

where

epi
(M) =




epi
(n) + si if i ∈ I0

epi
(n) − epi

(α) if i ∈ I1

0 if i ∈ I2

and

I0 := {i ∈ {1, 2, . . . , q}|epi
(α) = 0}

I1 := {i ∈ {1, 2, . . . , q}|1 � epi
(α) < epi

(n)}
I2 := {i ∈ {1, 2, . . . , q}|epi

(n) � epi
(α)}.

Then we have the following lemma concerning the binomial coefficients.
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Lemma 1.

(i) If 1 � j � L then

MCjα
j ≡ 0 (mod n).

(ii) Let M ′ < M be a divisor of M. Then there exists 1 � j � L satisfying

M ′Cjα
j ≡ 0 (mod n).

Proof.

(i) Since si = ⌊
logpi

L
⌋
, L < p

si+1
i holds for any i = 1, 2, . . . , q. Therefore, we show

that if 1 � j < p
si+1
i then MCjα

j ≡ 0 (mod p
epi

(n)

i ) for i = 1, 2, . . . , q. Then, by the
Chinese remainder theorem [22], we have MCjα

j ≡ 0 (mod n) for 1 � j � L.

For i ∈ I2, because α ≡ 0 (mod p
epi

(n)

i ) holds, it follows MCjα
j ≡ 0 (mod p

epi
(n)

i ) for
1 � j < p

si+1
i . Suppose i ∈ I1. Then the index epi

(MC1α) for j = 1 is epi
(n):

epi
(MC1α) = epi

(n) − epi
(α) + epi

(α) = epi
(n).

Since 1 � epi
(α), the index epi

(MCjα
j ) is monotone increasing with respect to j .

Therefore, we have epi
(MCjα

j ) � epi
(n) and hence MCjα

j ≡ 0 (mod p
epi

(n)

i ) for
1 � j < p

si+1
i .

Finally, suppose i ∈ I0. Since epi
(α) = 0, the index epi

(MCjα
j ) is invariable with

respect to j except such j that pu
i |j for 1 � u � si . Actually, for j = 1, we have

epi
(MC1α) = epi

(M) = epi
(n) + si .

The index epi
(MCjα

j ) remains invariable for 1 � j � pi − 1 because of

epi
(M − 1) = epi

(M − 2) = · · · = epi
(M − pi + 1) = 0

and

epi
(pi − 1) = epi

(pi − 2) = · · · = epi
(1) = 0.

For j = pi , the prime pi appears in the denominator of the binomial coefficient MCpi
:

MCpi
= M(M − 1) · · · {M − (pi − 1)}

1 × 2 × · · · × pi

.

Hence we have

epi

(
MCpi

αpi
) = epi

(n) + si − 1.

For j = pi + 1, however, pi appears in the numerator of MCpi+1 again

MCpi+1 = MCpi

M − pi

pi + 1

= MCpi

pi (M/pi − 1)

pi + 1
,

therefore the index recovers its initial value:

epi

(
MCpi+1α

pi+1
) = epi

(n) + si .

Thus, for 1 � j < psi+1, we inductively have

epi
(MCjα

j ) =
{
epi

(n) + si − u if pu
i |j for 1 � u � si

epi
(n) + si otherwise.

Noting 1 � u � si , we have epi
(MCjα

j ) � epi
(n) and hence MCjα

j ≡ 0 (mod p
epi

(n)

i )

for 1 � j < p
si+1
i . The Chinese remainder theorem completes the proof.



Linearizable cellular automata 7169

(ii) Note that, for i ∈ I2,M/pi is not a divisor of M because pi does not divide M. Consider
a divisor M ′ = M/pi of M. If i ∈ I0 then we have

epi

(
M ′Cp

si
i
αp

si
i

) = epi
(n) − 1,

therefore M ′Cp
si
i
αp

si
i ≡ 0 (mod n). Since si = ⌊

logpi
L
⌋
, j = p

si

i satisfies 1 � j � L.

On the other hand, if i ∈ I1 then the index epi
(M ′Cjα

j ) is monotone increasing with
respect to j . Therefore the minimum is attained at j = 1,

epi
(M ′C1α) = epi

(n) − 1.

Thus we have M ′C1α ≡ 0 (mod n).
For smaller divisors M ′ of M, we inductively have M ′Cjα

j ≡ 0 (mod n) for 1 �
∃j � L. �

Noting expansion (16) of the polynomial T (x)M on Zn, lemma 1(i) leads to

T (x)M = 1.

Thus M is a period of the block of size L in the rule (10).
By lemma 1(ii), M is the smallest number satisfying T (x)M = 1. If the commutative ring

Zn has zero divisors then there can be M ′ < M which satisfy T (x)M
′
B(x)0 = B(x)0 for an

initial configuration B(x)0 of the block. The smallest one among such M ′’s must be a divisor
of M. Therefore, the fundamental period of the block is a divisor of M, which depends on the
initial configuration B(x)0 of the block.

We obtain the following proposition concerning the fundamental period of a block in the
rule (10).

Proposition 2. Let

ηi(k) := min[si, k − 1],

ξi(k) := ηi (k)
min
d=0

[
L−p

si−d

i

min
j=0

[
gcd

(
b0

(r−1)jp
d
i , pk

i

)]]
and

�i(k) :=
{
pk

i if ξi(k) = pk
i

1 otherwise,

for i = 1, 2, . . . , q and k = 1, 2, . . . , epi
(n) + si . Put

Q0 :=
∏
i∈I0

epi
(n)+si

max
k=1

[�i(k)]

Q1 :=
∏
i∈I1

L−1
min
j=0

[
gcd
(
b0

(r−1)j , p
epi

(n)−epi
(α)

i

)]
,

where b0
0, b

0
(r−1), . . . , b

0
(r−1)L are the initial values of the cells in a block of size L. Then the

fundamental period of the block in the rule (10) is
M

Q0Q1
.

Proof. Suppose i ∈ I0. Consider a divisor M ′ = M
/
pk

i of M, where 1 � k � epi
(n) + si . If

and only if p
si−ηi (k)

i

∣∣j we have M ′Cjα
j ≡ 0 (mod n) because of

epi

(
M ′C

p
si−ηi (k)

i

αp
si−ηi (k)

i

) = epi
(n) − k + ηi(k) < epi

(n).

Note that if k > si then psi−ηi (k) = 1 and hence M ′Cjα
j ≡ 0 (mod n) for 1 � ∀j � L.
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Consider the polynomial T (x)M
′
B(x)0 in x on Zn. If the coefficient M ′Clα

lb0
(r−1)j of

x(r−1)(l+j) does not vanish then p
si−ηi (k)

i

∣∣l. The coefficient of x(r−1)m in T (x)M
′
B(x)0 therefore

vanish for m < p
si−ηi (k)

i . Assume l = p
si−d
i for 0 � ∃d � ηi(k). If epi

(
b0

(r−1)j

)
� k −d holds

for 0 � j � L − l then we have

epi

(
M ′Clα

lb0
(r−1)j

) = epi
(M ′Clα

l) + epi

(
b0

(r−1)j

)
�
(
epi

(n) − k + d
)

+ (k − d) = epi
(n)

and hence M ′Clα
lb0

(r−1)j ≡ 0 (mod n). This implies that the coefficient of x(r−1)m in

T (x)M
′
B(x)0 vanish for l = p

si−d
i � m � L. Thus, if we have

L−p
si−d

i

min
j=0

[
gcd

(
b0

(r−1)j , p
k−d
i

)] = pk−d
i

for 0 � ∀d � ηi(k), or equivalently have

ξi(k) = ηi (k)
min
d=0

[
L−p

si−d

i

min
j=0

[
gcd

(
b0

(r−1)jp
d
i , pk

i

)]] = pk
i

then T (x)M
′
B(x)0 = B(x)0 holds on Zn. Therefore, the divisor M ′ = M

/
pk

i of M is a period

of the block in the rule (10). The maximum pk
i ∈ {1, pi, . . . , p

epi
(n)+si

i } for which M ′ = M/pk
i

is a period of the block in the rule (10) is
epi

(n)+si

max
k=1

[�i(k)] .

On the other hand, suppose i ∈ I1. Consider a divisor M ′ = M
/
pk

i of M, where

1 � k � epi
(n) − epi

(α). The smallest j for which M ′Cjα
j ≡ 0

(
mod p

epi
(n)

i

)
is j = 1,

epi
(M ′C1α) = epi

(n) − k.

Since epi
(M ′Cjα

j ) is monotone increasing with respect to j , if we have

L−1
min
j=0

[
gcd
(
b0

(r−1)j , p
k
i

)] = pk
i

then T (x)M
′
B(x)0 = B(x)0 holds on Zn. Therefore the divisor M ′ = M

/
pk

i of M is a

period of the block in the rule (10). The maximum pk
i ∈ {1, pi, . . . , p

epi
(n)−epi

(α)

i

}
for which

M ′ = M
/
pk

i is a period of the block in the rule (10) is

L−1
min
j=0

[
gcd
(
b0

(r−1)j , p
epi

(n)−epi
(α)

i

)]
.

Thus we inductively obtain the desired result. �

Remark 2. If epi
(α) > 0 holds for all i = 1, 2, . . . , q, then we have

epi
(M) = max

[
epi

(n) − epi
(α), 0

]
for all i = 1, 2, . . . , q. This implies that the fundamental period of a block in the rule (10)
with such α as above is a constant which is independent of its size.

Consider a configuration c of size N ≡ 0 (mod r − 1) which contains m blocks of size
(r − 1)L1 + 1, (r − 1)L2 + 1, . . . , (r − 1)Lm + 1 (L1 � L2 � · · · � Lm ∈ N), respectively.
Suppose the values of the cells in the block of size (r − 1)Ll + 1 to be bt

l,0, b
t
l,1, . . . , b

t
l,(r−1)Ll

for l = 1, 2, . . . , m. Let

sl
i := ⌊

logpi
Ll

⌋
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for i = 1, 2, . . . , q and l = 1, 2, . . . , m. Also let

ηl
i(k) := min

[
sl
i , k − 1

]
ξ l
i (k) := ηl

i (k)

min
d=0


L−p

sl
i
−d

i

min
j=0

[
gcd

(
b0

l,(r−1)jp
d
i , pk

i

)]
�l

i (k) :=
{
pk

i if ξ l
i (k) = pk

i

1 otherwise

for i = 1, 2, . . . , q, l = 1, 2, . . . , m and k = 1, 2, . . . , epi
(n) + sl

i . Put

Ml :=
q∏

i=1

p
epi (M

l)
i ,

where

epi
(Ml) =




epi
(n) + sl

i if i ∈ I0

epi
(n) − epi

(α) if i ∈ I1

0 if i ∈ I2.

Also put

Ql
0 :=

∏
i∈I0

epi
(n)+sl

i

max
k=1

[
�l

i (k)
]

Ql
1 :=

∏
i∈I1

Ll−1
min
j=0

[
gcd
(
b0

l,(r−1)j , p
epi

(n)−epi
(α)

i

)]
for l = 1, 2, . . . , m. Then, by proposition 2, the least common multiple

P := lcm

(
M1

Q1
0Q

1
1

,
M2

Q2
0Q

2
1

, . . . ,
Mm

Qm
0 Qm

1

)
of the fundamental periods of the blocks is the fundamental period of the configuration c in
the rule (10).

Now we consider the global transition F which depends not on the right shift f but only
on the local transition δ of a rule of the cellular automaton A(n)

r ,

F(c) = c′,

where

c′
i = δ

(
ci+e1 , ci+e2 , . . . , ci+er

)
≡
{
αci+e1 + ci+er

(mod n) if ci+e2 = · · · = ci+er−1 = 0
ci+er

(mod n) otherwise,
(17)

for i = 1, 2, . . . , N . Since P is the fundamental period of the configuration c in the time
evolution given by the global transition F̃ , the configuration which is obtained after P-step
evolution of c by the global transition F is the erP shift of c in the left direction. Thus we
obtain the following proposition.

Proposition 3. Let c be a configuration of size N ≡ 0 (mod r − 1) which contains m blocks of
size (r −1)L1 + 1, (r −1)L2 + 1, . . . , (r −1)Lm + 1 (L1 � L2 � · · · � Lm ∈ N), respectively.
Then the fundamental period of the configuration c in the rule (17) is a divisor of
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Figure 1. A greyscale image of the time evolution of the initial configuration of size 51 in the rule
(19). Configurations at successive time steps are shown as successive lines from top to bottom.
The values of the cells in the initial configuration are chosen randomly from 0 to 5. Cells with the
highest value 5 are shown by black and with the lowest value 0 by white.

NP

gcd(N, erP )
. (18)

If the configuration c has no translation symmetry then the fundamental period is exactly (18).

Example 2. Let n = 6 and r = 3. Also let α = 3. Then the updating rule (17) is

c′
i ≡

{
3ci−1 + ci+1 (mod 6) if ci = 0
ci+1 (mod 6) otherwise,

(19)

for i = 1, 2, . . . , N . The rule number (1) is a number of 169 figures. A configuration is
reversible in the rule (19) if its size is odd. An example of the time evolution is described in
figure 1.

The initial configuration in figure 1 contains five blocks of size 3, 3, 3, 7 and 15
respectively. Hence we have

L1 = 1, L2 = 1, L3 = 1, L4 = 3, L5 = 7

and

M1 = 2, M2 = 2, M3 = 2, M4 = 22, M5 = 23.

Each block has the following initial configuration, respectively,

503 200 402 1 020 104 400 020 205 000 204.

Therefore we have{
Q1

0 = 1

Q1
1 = 1

{
Q2

0 = 2

Q2
1 = 1

{
Q3

0 = 2

Q3
1 = 1

{
Q4

0 = 1

Q4
1 = 1

{
Q5

0 = 2

Q5
1 = 1

and

P = lcm

(
2

1 × 1
,

2

2 × 1
,

2

2 × 1
,

22

1 × 1
,

23

2 × 1

)
= 22.

Thus the fundamental period of the initial configuration in the rule (19) is

51 × 22

gcd(51, 1 × 22)
= 204.
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Table 2. Classification of all reversible rules of ECA with periodic boundaries.

Type Rule

Trivial 15 51 85 170 204 240
Additive 105 150
Linearizable 154 166 180 210
Unknown 45 75 89 101

Finally, we mention conserved quantities. Consider a configuration of size N ≡ 0 (mod
r − 1) which contains m blocks of size (r − 1)L1 + 1, (r − 1)L2 + 1, . . . , (r − 1)Lm + 1 as
above. Let the size of the boundary wall adjacent to the block of size (r − 1)Li + 1 be Ui − 1
(i = 1, 2, . . . , m), where Ui ∈ N. Since both (r − 1)Li + 1 and Ui − 1 never change in the
time evolution, the 2 × m matrix(

L1 L2 · · · Lm

U1 U2 · · · Um

)
(20)

is a conserved quantity.
For a fixed N ≡ 0 (mod r − 1), the number of the conserved quantities (20) is counted

as follows. Let � be a partition of N which consists of m� numbers equally more than r:
� = (

λ1, . . . , λm�

)
, where λ1, . . . , λm�

� r . Then the number of the matrix (20) is

∑
�

m�∏
i=1

(⌈
λi

r − 1

⌉
− 1

)
,

where � � : R → Z is the ceiling function and the sum ranges over possible partitions � of N
which consists of numbers equally more than r.

5. Discussion

We showed that the initial value problem for the reversible rule 154 of ECA with periodic
boundaries can be reduced to an initial-boundary value problem for a linear system on the
finite commutative ring Z2. Thus the initial value problem for the rule 154 with periodic
boundaries can be solved, and hence it can be considered integrable. The congruent rules 166,
180 and 210 with respect to the reflection and the conjugation are also reduced to some linear
systems, respectively.

The reversible ECA are classified into four types: trivial, additive, linearizable and
unknown (see table 2). The local transitions of the rules 45, 75, 89 and 101 of unknown
type are compositions of the local transitions of the linearizable rules 210, 180, 166 and
154 and the 0–1 exchange, respectively. However, their behaviours in the time evolution are
much different from the linearizable ones. For instance, the fundamental periods of generic
configurations in these rules are much longer than those in the linearizable ones. Making a
thorough investigation of these rules is a further problem.

We obtained a family of linearizable cellular automata A(n)
r , each of which can be regarded

as a generalization of the reversible rule 154 to arbitrary n ∈ N and r ∈ N. Each member
of this family can be reduced to a linear system arising from the permutation (9) and the
fundamental period of arbitrary configuration is exactly computed (see proposition 3). As in
the case of the rule 154, the congruent rules can also be generalized to linearizable cellular
automata. We finally remark that permutations other than (9) do not always lead to reversible
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systems. For example, let n = 3 and r = 3. Consider a rule in which sequences of numbers
00, 10 and 20 act as the following permutations when they hit a cell from the left, respectively,(

0 1 2
0 2 1

) (
0 1 2
1 0 2

) (
0 1 2
2 1 0

)
.

Then there exist irreversible configurations of size N ≡ 1 (mod 2) in this rule. Actually,
since both configurations 100 and 201 of size N = 3 evolve into a configuration 201, the
configuration 201 is not reversible.
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